This article highlights essential simplification and quick calculation problems that greatly benefit candidates preparing for competitive exams like CAT, SSC, Banking, defense, and Railway exams. Mastering these problems enhances individuals’ skills in simplifying expressions, solving equations, and performing fast and accurate calculations, boosting their chances of success in these exams.

Multiplication

Que 1: 157.03 × 17.004 – N ÷ 0.15 = 639.98 × 0.249 

Find the approximate value of N.

(a) 410

(b) 376

(c) 343

(d) 238

Solution: 157 × 17 – N × 100/15 = 640 × 0.25

(160-3) × 17 – N × 20/3 = 640/4

(2720-51) – N × 20/3 = 160

N = 2509 × 3/20 = 376.35

Option (b) is correct

Que 2: 33.33% of 24% of 37.5% of 800

(a) 1

(b) 24

(c) 32

(d) 40.25

Solution: 1/3 × (25% – 1%) × 3/8 × 800

=(1/4 – 1%) × 100

=25-1

=24

Option (b) is correct

YouTube Channel

Que 3: N=80.052% of 1350.02 + 37.997% of 450.03 – 280.987 

Find the approximate value of N.

(a) 970

(b) 750

(c) 860

(d) 912

Solution: 80% × 1350 + 38% × 450 – 281

=4/5 × 1350 + 450% × 38 – 281

=1080 + 9/2 × 38 – 281

=1080 + 171 – 281

= 1251 – 281

= 970

Option (a) is correct


Que 4: (27.997)² – (32.005)² + (23.998)² – √x =335

Find the approximate value of x. 

(a) 0

(b) 1

(c) 4

(d) 13

Solution: 28² – 32² + 24² – √x =335

(28 – 32) (28 + 32) + 576 – √x =335

-240 + 576 – √x =335

336 – √x=335

x=1

Option (b) is correct


Que 5: 234.01 × \frac{k}{12.99} – 29.9% of 499.9 = 810.01 ÷ 26.98

Find the approximate value of k.

(a) 5

(b) 24

(c) 12

(d) 10

Solution: (234/13) × k – 30% × 500 = 810/27

18k – 150 = 30

k=10

Option (d) is correct


Que 6: 17\frac{2}{5}+5\frac{3}{4}+11\frac{5}{8}-2\frac{1}{4}\times 2\frac{3}{4}.

(a) 27\frac{31}{80}.

(b) 28\frac{47}{80}.

(c) 26\frac{3}{8}.

(d) 27\frac{41}{80}.

Solution: 17\frac{2}{5}+5\frac{3}{4}+11\frac{5}{8}-6\frac{3}{16}.

=28+\frac{47}{80}.

Option (b) is correct


Que 7: Find the value of 77777²

(a) 6094712629

(b) 6084261729

(c) 6058721629

(d) 6049261729

Solution: 11111² × 49

=123454321 × 49% × 100

=123454321 × (50% – 1%) × 100

=123454321 × (1/2 – 1/100) × 100

=(61727160.5 – 1234543.21) × 100

=60492617.29 × 100

=6049261729

Option (d) is correct


Que 8: Find the value of 992 × 1012 – 997 × 1004

(a) 2256

(b) 2826

(c) 2916

(d) 3106

Solution: Apply near 1000 concept 

992 × 1012=1003904 

997 × 1004= 1000988

1003904 – 1000988=2916

Option (c) is correct


Que 9: Find the sum of the digits of 99999²

(a) 36

(b) 45

(c) 27

(d) 42

Solution: From the Magical pattern of series 9

99999² = 9999800001

The sum of digits= 45

Option (b) is correct


Que 10: Find the sum of the digits of 97×99×101×103

(a) 18

(b) 27

(c) 36

(d) 45

Solution: (x-3)(x-1)(x+1)(x+3)

= (x² – 3²) (x² – 1²) 

Here, x=100

= (100² – 9) (100² -1) 

Product of numbers near 10,000

=99900009

Sum of digits=36

Option (c) is correct

Que 11: Find the value of 3007×2988×625

(a) 5415752500

(b) 5615572500

(c) 5725742500

(d) 5552172500

Solution: 3007×2988=8984916

8984916×625=8984916×(10000/16)

=5615572500

Option (b) is correct


Que 12: Find the approximate value of 80.052% of 1350.02 + 37.428% of 481 + 77% of 1428

(a) 2196

(b) 2270

(c) 2360

(d) 2252

Solution: 80% ×1350+ 37.5% ×480 +1428% ×77

=4/5×1350 +3/8 ×480+14.28% ×77×100

=1080+180+1/7×7700

=2360

Option (c) is correct


Que 13: Find the sum of the digits of 238×517+203×761×23-41×233

(a) 35

(b) 41

(c) 15

(d) 29

Solution: 238×517+203×761×23-41×233

Use the Digit Sum concept

=4×4+5×5×5-5×8

=7+8-4

=2

The digit sum of the option (D)= 2+9=11=2

Option (d) is correct


Test 1: Simplification

Que 1: The value of 2×3÷2 of 3×2÷(4+4×4÷4 of 4-4÷4×4) is:

(a) 8

(b) 1

(c) 4

(d) 2 

Solution: 2×3÷6×2÷(4+4×4÷16-4÷4×4) 

=2×1/2×2÷(4+16÷16-1×4) 

=2÷(4+1-4) 

=2

Option (d) is correct


Que 2: 2/3 of 9/15 ÷(5/4÷5/2×8/25) of (3/4×3/4÷1) is:

(a) 20/9

(b) 4/25

(c) 18/125

(d) 40/9 

Solution: ⅔ of 9/15 ÷(5/4÷5/2×8/25) of (3/4×3/4÷1) 

=6/15÷(5/4×2/5×8/25) of (9/16) 

=6/15÷4/25 of 9/16

=6/15÷9/100

=6/15×100/9

=40/9

Option (d) is correct


Que 3: 7,77,77,777÷77 equals 

(a) 1111

(b) 101001

(c) 10101

(d) 1010101

Solution: 1010101

Option (d) is correct


Que 4: If (√x+√y)=15 and (√x-√y)=3 then the value of √(xy)/4 is:

(a) 14.5

(b) 13.5

(c) 15.5

(d) 16.5

Solution: (√x+√y)²=15²  |  x+y+2√(xy)=225

(√x-√y)²=3²     |  x+y-2√(xy)=9

Subtract (i)-(ii) 

4√(xy)=216

√(xy)=54  & √(xy)/4=13.5

Option (b) is correct


Que 5: If √4096=64, then the value of √40.96+√0.4096+√0.004086+√0.00004096 up to two places of decimals is:

(a) 7.09

(b) 7.10

(c) 7.11

(d) 7.12

Solution: 6.4+.64+.064+.0064=7.1104

Option (c) is correct


Que 6: Find the value of (3+2√2)ⁿ +(3-2√2)ⁿ, where n=-3? 

(a) 189

(b) 180

(c) 108

(d) 198

Solution: [(3-2√2)³+(3+2√2)³]/{3²-(2√2)²}³

=198/1³

=198

Option (d) is correct


Que 7:  For x=√(m+2n) & y=√(m-2n), the value of (x+y)/(x-y)=√3 then m:n is equal to.

(a) 2:√3

(b) √3:4

(c) √3:2

(d) 4:√3

Solution: {(x+y)+(x-y)}/{(x+y)-(x-y)}=(√3+1)/(√3-1) 

x/y=(√3+1)/(√3-1) 

x²/y²=(2+√3)/(2-√3) 

(x²+y²)/(x²-y²)=4/2√3=2/√3

2m/4n=2/√3

m/n=4/√3

Option (d) is correct


Que 8: If x=5+2√6 then find the value of √x+1/√x

(a) 2√3

(b) 3√2

(c) 2√6

(d) 6√2

Solution: √x=√(√3+√2)²=√3+√2

1/√x =(√3-√2) 

√x+1/√x=2√3

Option (a) is correct


Que 9: If x=4.6⁴+5.4⁴+24.84²  & y=4.6²+5.4²+24.84 then x/y is equal to? 

(a) 24.42

(b) 24.24

(c) 25.42

(d) 25.48

Solution: a⁴+b⁴+(ab)²=(a²+b²+ab)(a²+b²-ab) 

x/y=4.6²+5.4²-4.6×5.4 =25.48

Option (d) is correct


Que 10: If (4+3√3)/√(7+4√3) =A+√B then find the value of B-A? 

(a) -13

(b) 2√13

(c) 13

(d) 3√3-√7

Solution: √(7+4√3)=√(2+√3)²=2+√3

(4+3√3)(2-√3)/1= -1+2√3

A+√B=-1+√12

B-A=12-(-1)=13

Option (c) is correct


Test 2: Simplification

Que 1: If ‘+’ means ‘-’ , ‘-’ means ‘+’, ‘×’ means ‘÷’ and ‘÷’ means ‘×’ then the value of 

\frac{42-12\times 3+8\div 2+15}{8\times 2-4+9\div 3}.

(a) -15/19

(b) 15/19

(c) 5/3

(d) -5/3

Solution: 

(42+12÷3-8×2-15)=42+4-16-15=15

(8÷2+4-9×3)=4+4-27=-19

Option (a) is correct


Que 2: Find the value of the given expression

\sqrt{\frac{4\frac{1}{7}-2\frac{1}{4}}{3\frac{1}{2}+1\frac{1}{7}}\div\frac{1}{2+\frac{1}{2+\frac{1}{5-\frac{1}{5}}}}}.

(a) 1 

(b) 4

(c) 3

(d) 2

Solution: 

A=4(1/7) -2(1/4)=29/7-9/4=(116-63)/28=53/28

B=3(1/2)+1(1/7)=7/2+8/7=(65/14) 

A/B=53/130

5-1/5=24/5

2+5/24=53/24

2+24/53=130/53

53/130

53/130÷ 53/130=1

Option(a) is correct.


Que 3: Find the value of the given expression

[(1+\frac{1}{10+\frac{1}{10}})^2- (1-\frac{1}{10+\frac{1}{10}})^2]\div [(1+\frac{1}{10+\frac{1}{10}})(1-\frac{1}{10+\frac{1}{10}})].

(a) 20/101

(b) 100/101

(c) 2

(d) None

Solution:

(a²-b²)÷ab={(a+b)(a-b)}÷ab

a=1+10/101=111/101

b=1-10/101=91/101

a+b=202/101

a-b=20/101

ab=(111×91)/101²

(a+b)(a-b)/ab=(202×20)/111×91=4040/10101

Option (d) is correct


Que 4: Find the value of the given expression

\frac{1.2^3+0.8^3+0.7^3-2.016}{1.35\times [1.2^2+0.8^2+0.7^2-0.96-0.84-0.56]}.

(a) 1/4

(b) 1/2

(c) 1 

(d) 2

Solution: 

a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca) 

Note: Here (a+b+c)=1.2+0.8+0.7=2.7

Option (d) is correct


Que 5: If x=\sqrt{5+\sqrt{5+\sqrt{5+…}}} and y=\sqrt{5-\sqrt{5-\sqrt{5-…}}} then which one is correct:

(a) x-y+1=0

(b) x+y-1=0

(c) x+y+1=0

(d) x-y-1=0

Solution:

x²=5+x  | y²=5-y

x²-x=5   | y²+y=5

x²-x=y²+y

x²-y²=x+y

(x+y)(x-y)=(x+y) 

x-y=1

x-y-1=0

Option (d) is correct


Que 6: Find the value of the given expression

(5^{\frac{1}{4}}-1)(5^{\frac{3}{4}}+5^{\frac{1}{2}}+5^{\frac{1}{4}}+1).

(a) 5

(b) 25

(c) 10

(d) 4

Solution: 

(a-1) (a³+a²+a+1)=(a⁴-1) 

a⁴-1=5-1=4

Option (d) is correct


Que 7: Find the value of the given expression

\sqrt{2\sqrt[3]{4\sqrt{2\sqrt[3]{4\sqrt{2\sqrt[3]{4...}}}}}}.

(a) 32

(b) 8

(c) 4

(d) 2

Solution: 

(x²/2)³=4x

x6=32x

x5=32

x=2

Option (d) is correct


Que 8: \sqrt{5\sqrt{5\sqrt{5\sqrt{5\sqrt{5}}}}}=?

(a) 5^(1/32)

(b) 5^(15/32)

(c) 5^(31/32)

(d) 5^(1/16)

Solution: 

Number of roots, n=5

So, answer=5^(1-1/2ⁿ) =5^(31/32)

Option (c) is correct


Que 9: Find the value of the given expression

2\sqrt[3]{32}-3\sqrt[3]{4}+\sqrt[3]{500}.

(a) 3\sqrt{24}

(b) 6\sqrt[3]{4}

(c) 2\sqrt[3]{24}.

(d) None

Solution:

2×2×(4)^⅓ – 3×(4)^⅓ +5×(4)^⅓

=6×(4)^⅓


Que 10: Find the value of the given expression

[(-2)^{(-2)}]^{(-2)}.

(a) -1

(b) -8

(c) 8

(d) 16

Solution:

 (-1/4)^(-2)=(-4)²=16


Test 3: Simplification

Que 1: Select the correct combination of mathematical signs that can sequentially replace the * sign and balance the given equation.

42*7*64*11*6*4

(a) ÷, -, +, x, =

(b) ×, +, -, ÷, =

(c) ÷, +, -, ×, =

(d) ×, -, +, ÷, =

Solution: 

42÷7+64-11×6=6+64-66=6-2=4

Option (c) is correct


Que 2: \frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99} is equal to:

(a) 10/11

(b) 9/11

(c) 5/11

(d) 7/11

Solution: \frac{1}{1\times 3}+\frac{1}{3\times 5}+\frac{1}{5\times 7}+\frac{1}{7\times 9}+\frac{1}{9\times 11}

=\frac{1}{2}[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{9}-\frac{1}{11}].

=\frac{1}{2}[1-\frac{1}{11}].

=5/11

Option (c) is correct


Que 3: Find the value of the given expression

\frac{0.8\overline{3}\div 7.5}{2.3\overline{21}-0.0\overline{98}}.

(a) 0.05

(b) 0.6

(c) 0.06

(d) 0.1

Solution: 0.8\overline{3}=\frac{83-8}{90}=\frac{75}{90}.

2.3\overline{21}=2+0.3\overline{21}=2+\frac{321-3}{990}=2+\frac{318}{990}.

0.0\overline{98}=\frac{98}{990}.

Final answer=0.05

Option (a) is correct


Que 4:Find the value of ‘*’ in the following

1\frac{2}{3}\div\frac{2}{7}\times\frac{*}{7}=1\frac{1}{4}\times\frac{2}{3}\div\frac{1}{6}.

(a) 6

(b) 1/6

(c) 0.006

(d) 0.6

Solution: \frac{5}{3}\times\frac{7}{2}\times\frac{*}{7}=\frac{5}{4}\times\frac{2}{3}\times 6.

*=6

Option (a) is correct


Que 5: If a=4.36, b=2.39, c=1.97 then the value of a³-b³-c³-3abc is:

(a) 3.94

(b) 2.39

(c) 0

(d) 1

Solution: a³+b³+c³-3abc=0 if (a+b+c)=0

or

a³-(-b)³-(-c)³-3a(-b)(-c)=a³-b³-c³+3abc=0

If {a+(-b)+(-c)}=(a-b-c)=0

Here, a-b-c=0 given 

Option (c) is correct


Que 6: Find the value of the given expression

y-[y-(x+y)-{y-(y-\overline{x-y})}+2x].

(a) 0

(b) x

(c) 4x

(d) 2y

Solution:

y-[y-(x+y)-{y-(y-x+y)}+2x]

y-[y-(x+y)-{y-2y+x}+2x]

y-[y-(x+y)-{x-y}+2x]

y-[y-x-y-x+y+2x]

y-[y]=0

Option (a) is correct


Que 7: Find the value of the given expression

56\div[\frac{1}{3}\{15+12-(9+6-\overline{5+7})\}].

(a) 12

(b) 4032

(c) 7

(d) 448 

Solution: 56\div[\frac{1}{3}\{15+12-(9+6-12)\}].

56\div[\frac{1}{3}\{15+12-3\}].

56\div 8=7.

Option (c) is correct


Que 8: Find the value of the given expression

17\frac{2}{5}+11\frac{3}{4}+5\frac{1}{5}-7\frac{1}{2}-8\frac{3}{5}+2\frac{1}{4}.

(a) 18.75

(b) 19.20

(c) 20.5

(d) 21.75

Solution: (17+11+5-7-8+2)+(2/5+1/5-3/5)+(3/4-1/2+1/4)

=20+0+0.5

=20.5

Option (c) is correct


Que 9: Find the value of the given expression

\frac{1}{\sqrt{12-\sqrt{140}}}-\frac{1}{\sqrt{8-\sqrt{60}}}-\frac{2}{\sqrt{10+\sqrt{84}}}.

(a) 0

(b) 1

(c) 2      

(d) 3

Solution: \sqrt{12-\sqrt{140}}=\sqrt{7}-\sqrt{5}.

\sqrt{8-\sqrt{60}}=\sqrt{5}-\sqrt{3}.

\sqrt{10+\sqrt{84}}=\sqrt{7}+\sqrt{3}.

\frac{1}{2}[(\sqrt{7}+\sqrt{5})-(\sqrt{5}+\sqrt{3})-(\sqrt{7}-\sqrt{3})]=0.

Option (a) is correct


Que 10: Find the value of a+b

\left(\frac{p^{-1}q^{2}}{p^{3}q^{-2}}\right)^{\frac{1}{3}}\div\left(\frac{p^{6}q^{-3}}{p^{-2}q^{3}}\right)^{\frac{1}{3}}=p^{a}q^{b}.

(a) -1

(b) -2/3

(c) 1/3

(d) 0

Solution: p^{\frac{-4}{3}}q^{\frac{4}{3}}\div p^{\frac{8}{3}}q^{\frac{-6}{3}}.

p^{\left(\frac{-4}{3}-\frac{8}{3}\right)}q^{\left(\frac{4}{3}+2\right)}=p^{-4}q^{\frac{10}{3}}.

a=-4 , b=10/3 

a+b=-2/3

Option (b) is correct


Classification of Numbers

Que 1: Which of the following is an integer but not a whole number?

(a) -2

(b) -\frac{1}{3}.

(c) 5

(d) 2\frac{1}{3}.

Solution: Integers={…,-3,-2,-1,0,1,2,3,….}

Whole numbers={0,1,2,3,….}

Option (a) is correct


Que 2: Which of the following does not describe the number 5?

(a) Real number

(b) Whole number

(c) Complex number

(d) None

Solution: 5 is a real, whole, Integer, and complex number with the imaginary part equal to zero.

Option (d) is correct


Que 3: Which one is not a surd?

(a) \sqrt{2}

(b) 8\sqrt{3}

(c) \sqrt{\pi}

(d) \sqrt{2\frac{3}{5}}

Solution: The square root of a rational number, having an irrational solution is called surd but 𝜋 is an irrational number.

Option (c) is correct


Que 4: Zero (0) is what type of number?

(a) Real number

(b) Imaginary number

(c) Rational number

(d) None

Solution: All of the above

Option (d) is correct


Que 5: Which one describes the set {0,1,2,3,4….}?

(a) Natural number

(b) Integers

(c) Whole numbers

(d) Rational Numbers

Solution: Option (c) is correct


Que 6: 5/8 is a ?

(a) Natural number

(b) Whole number

(c) Rational number

(d) Integer

Solution: Option (c) is correct


Que 7: Which number is not irrational?

(a) √2

(b) √4.41

(c) √22.5

(d) √𝜋

Solution: √4.41=2.1

Option (b) is correct


Que 8: Natural numbers are also called?

(a) Counting numbers

(b) Elementary numbers

(c) Real numbers

(d) None

Solution: Option (a) is correct


Que 9: Which type of numbers can’t be written in fractions?

(a) Real numbers

(b) Complex numbers

(c) Surds

(d) Zero

Solution: Surds are irrational numbers.

Option (c) is correct


Que 10: Classify the number -12?

(a) Rational, Complex, Transcendental

(b) Real, irrational, integer

(c) Rational, Integer, Real number

(d) Real, Irrational, Whole

Solution: Option (c) is correct


Properties of Prime Numbers: Click Here

Que 11: Find the remainder when 7392 is divided by 24?

(a) 58

(b) 7

(c) 1

(d) 0

Solution: P2 mod 24=1, Here Prime Number P>3

Refer to fact number:8

Option (c) is correct


Que 12: If a2-b2=103 where a and b are consecutive numbers then find the value of 2a+3b?

(a) 192

(b) 204

(c) 257

(d) 312

Solution: 103=(\frac{103+1}{2})^{2}-(\frac{103-1}{2})^{2}=52^2-51^2.

a=52 and b=51

2a+3b=257

Refer to fact number:9

Option (c) is correct


Que 13: Which number is not a prime number?

(a) 659

(b) 767

(c) 877

(d) 967

Solution: 767 is divisible by 13

Option (b) is correct


Que 14: Find the remainder when 2437 is divided by 37?

(a) 36

(b) 1

(c) 24

(d) 12

Solution: \frac{24^{37}}{37}=\frac{24^{36}\times 24}{37}.

2436×24 mod 37=24

As we know 2436 mod 37=1 

Refer to Fermat’s Little Theorem.

Option (c) is correct


Que 15: Find the remainder when 15! is divided by 17?

(a) 1

(b) 8

(c) 15

(d) 16

Solution: 16! mod 17=16

16×15! mod 17=16

16×k=16

k=1 (Wilson Theorem)

Refer to Fact Number:6

Option (a) is correct


Que 16: Find the average of all Prime numbers from 1 to 100?

(a) 38.25

(b) 41.50

(c) 42.40

(d) 43.80

Solution: Option (c) is correct


Que 17: When a four-digit prime number is divided by 6 then what could be the possible remainder?

(a) 2

(b) 3

(c) 4

(d) 5

Solution: Prime number=6n±1

So, the remainder would be 1 or -1

Here -1 means 6-1=5

Option (d) is correct


Que 18: Which number is a Prime Number?

(a) 144711

(b) 144723

(c) 144757

(d) 144765

Solution: Options (a),(b), and (d) are divisible by 3 

Option (c) is correct


Que 19: Which number is a composite number?

(a) 457

(b) 577

(c) 679

(d) 883

Solution: 679 is divisible by 7

Option (c) is correct


Que 20: Find the sum of the digits of the Prime number (P) if P-66 is divisible by a perfect square number?

(a) 12

(b) 16

(c) 19

(d) 25

Solution: P=x2+x+41

x+41=66

x=25

P=625+25+41=691

Digit Sum=6+9+1=16

Refer to Fact Number: 7

Option (b) is correct