In aptitude-based competitive and entrance exams, remainder problems are commonly asked. These problems involve finding the remainder of a division operation and require a strong understanding of basic arithmetic principles. These problems can be challenging, but with practice and a solid grasp of mathematical concepts, they can be tackled successfully. In this discussion, we will explore some important remainder problems and strategies for solving them.

Note: Please read the simplification concepts before starting this.

Simplification Concepts: Click Here

Multiple Choice Questions

Que 1: N=123456…. is a 51-digit number then find the remainder when N is divided by 99?

(a) 0

(b) 1

(c) 98

(d) None

Solution: From 1 to 9 total of 9 digits, then pairs of two digits. Let k numbers of two digits be required to complete 51 digits. (Remainder Problems)

9+2k=51

k=21

So the last number= 9+k=30

N=12345……..282930

Apply the divisibility rule of 99:

01+23+45+67+89+(10+11+12+…….+30)

Here the yellow part is in A.P. (Arithmetic Progression)

⇒[(01+89)+(23+67)+45]+{(10+30)/2}×21

⇒[90+90+45]+420

Now, (90+90+45+420) mod 99=(-9-9+45+24)=51

Option(d)

Que 2: If N=66666…… is a 700-digit number, then find the remainder when N is divided by 137.

(a) 0

(b) 1

(c) 90

(d) 136

Solution: 10001=73×137 

AAAA×AAAA=AAAAAAAA

This means that every 8-digit number in which all the digits are the same is divisible by 137.

Now eliminate all the 8-digit pairs from the left side and make a new number of the remaining digits. (Remainder Problems)

700 mod 8=4

New number=6666

6666 mod 137=90

Option(c)

YouTube Channel

Que 3: Find the remainder when 1! ×2! ×3! ×4! ×5!  ×…… ×12!  is divided by 13.

(a) 1

(b) 2

(c) 8

(d) 12

Solution: 1! mod 13=1 (Remainder Problems)

2! mod 13=2

3! mod 13=6

4! mod 13=-2

5! mod 13=5×(-2)=-10 or -10+13=3

6! mod 13=6×3 mod 13=5

7! mod 13=7×5 mod 13=-4

8! mod 13=8×(-4) mod 13=-32+39=7

9! mod 13=9×7 mod 13=-2

10! mod 13=10×(-2) mod 13=-20+26=6

11! mod 13=11×6 mod 13=1

12! mod 13=12×1 mod 13=-1

⇒ 1×2×6×(-2)×3×5×(-4)×7×(-2)×6×1×(-1) mod 13

2×6×2×3×5×4×7×2×6 mod 13

⇒ (-2)×2×2×(-1) mod 13

⇒ 8

Option:(c)

MBA Entrance Exams Classes

Que 4: Find the remainder when 111222333444…..999 is divided by 13? 

(a) 6

(b) 8

(c) 9

(d) 11

Solution: (111-222+333-444+555-666+777-888+999) mod 13

⇒ (111+111+111+111+111) mod 13

⇒ 555 mod 13

⇒ 9 (Remainder Problems)

Option (c) is correct.


Que 5: N=45678947+76543278, find the remainder when N is divided by 73. 

(a) 12

(b) 9

(c) 7

(d) 4

Solution: Here, Except for the sum of the digits in the units place, the sum of all the remaining digits is the same i.e. 11.

The sum of unit digits= 7+8=15

Concept: An eight-digit number in which all the digits are the same is always divisible by 73.

Remainder= 15-11=4 (Remainder Problems)

Option:(d)


Que 6: Find the remainder when N=1121231234….78 is divided by 101? 

(a) 31

(b) 44

(c) 69

(d) 100

Solution: 1000001 is divisible by 101

(-112123+123412)+(-345123+456123)+(-456712+345678)

= 11289+111000-111034

=11289-34

=11255 (Remainder Problems)

11255 mod 101=44

Option:(b)


Que 7: Find the remainder when 1×2×3×4×5×…..×30 is divided by 61?  

a) 4

(b) 11

(c) 24

(d) 53

Solution: 59! mod 61=1

⇒ 30!×(31×32×33×………×59) mod 61

⇒ 30!×(-30!) mod 61

let the remainder be k (Remainder Problems)

⇒ -k2 mod 61

Now, only option (b) satisfies the condition.

⇒ -112 mod 61

⇒ -121 mod 61

⇒ 1

Option:(b)


Que 8: 4444⁵⁵⁵⁵+XXXX⁴⁴⁴⁴, when divided by 9, leaves the remainder of 5 then finds the sum of all possible values of x?

(a) 12

(b) 9

(c) 6

(d) None

Solution: Totient of 9=32×(1-1/3)=6

E⇒Exponent 

B⇒Base

Find E mod 6 and B mod 9

4444⁵⁵⁵⁵+XXXX⁴⁴⁴⁴= 4444⁵⁵⁵⁵+X⁴⁴⁴⁴.1111⁴⁴⁴⁴

⇒(75+X⁴.4⁴) mod 9 

⇒[(-2)5+X⁴.(-2)2] mod 9 

⇒[4+X⁴.4] mod 9 

Now X could be 1,2,3,4,5,6,7,8,9 (Remainder Problems)

But only for 2 and 7, the remainder will be 5.

[4+2⁴.4] mod 9= 5

[4+7⁴.4] mod 9= 5

So, the sum= 2+7=9

Option (b) is correct.


Que 9: N is the smallest multiple of 11 which when divided successively by 6, 7, and 8 leaves remainders 4, 2, and 1 respectively.  Find the remainder when N is divided by 13.

(a) 8

(b) 9

(c) 10

(d) 11

Solution: Concept of the Successive Remainder

8+1=9

9×7+2=65

65×6+4=394

N=LCM(6,7,8)×k+394

=(23×3×7)×k+394

=(8×3×7)×k+394

Now, [(8×3×7)×k+394] mod 11=0

(3k+9) mod 11=0 

k=8 (Remainder Problems)

So, N=(8×3×7)×8+394

[(8×3×7)×8+394] mod 13= 5+4=9

Option (b) is correct.


Que 10: Find the remainder when 1+12+123+1234+12345+…+10th term is divided by 13.

(a) 0

(b) 5

(c) 8

(d) 12

Solution: (1+12) mod 13=0

123 mod 13= -7

1234 mod 13= 234-1=233 mod 13= -1

12345 mod 13= 345-12= 333 mod 13= 8

123456 mod 13= 456-123= 333 mod 13= 8

1234567 mod 13= 567-234+1= (333+1) mod 13= 9

12345678 mod 13= 678-345+12= (333+12) mod 13= 7

123456789 mod 13= 789-456+123= (333+123) mod 13= 8-7=1

12345678910 mod 13= 910-678+345-12= 565 mod 13= 6

(0-7-1+8+8+9+7+1+6) mod 13

Remainder= 5 

Option (b) is correct.


Que 11: Find the remainder when 12345…. a 150-digit number is divided by 33.

(a) 12

(b) 19

(c) 29

(d) 32

Solution: 9+2k=150

k= 70.5

Last digits ⇒9+70=79 and then 8 

N=12345…78798

First, use the divisibility rule of 99

[(01+23+45+67+89)+(10+11+12+…+79)]×10+8

⇒ [{(90×2+45)+(89×35)}×10+8] mod 99

⇒ [{(-9×2+45)+(-10×35)}×10+8] mod 99

⇒ [(27-53)×10+8] mod 99

⇒ [-260+8] mod 99

⇒ [-62+8] mod 99

⇒ [-54] mod 99

⇒ -54+99= 45

45 mod 33=12

Option (a) is correct.


Que 12: Find the remainder when 15101 is divided by 324. 

(a) 256

(b) 243

(c) 317

(d) 79

Solution: 324=34×22

15101=34×54×1597

15101 mod 324= 54×1597 mod 4

Note: After calculating the new remainder, we must multiply it by 81.

⇒ 54×1597 mod 4

⇒ 14×(-1)97

⇒ -1

⇒ -1+4=3

Now, the final remainder= 3×81=243

Option (b) is correct.


Que 13: Find the sum of the digits of the remainder obtained when 13101+17101 is divided by 225.

(a) 6

(b) 13

(c) 11

(d) 9

Solution: 13101+17101= (15-2)101+(15+2)101

Here we use Binomial expansion: (Remainder Problems)

(15-2)101=101C0.(15)101+101C1.(15)100.(-2)1+…….+101C100.(15)1.(-2)100+101C101.(-2)101

(15+2)101=101C0.(15)101+101C1.(15)100.(2)1+…….+101C100.(15)1.(2)100+101C101.(2)101

Add both the expansions after dividing by 225:

⇒ 2×101C100.(15)1.(2)100

⇒ 2×101×15×2100

⇒ 101×15×2101

(101×15×2101) mod 225= [(101×2101) mod 15]×15

⇒[(101×2101) mod 15]×15

⇒[(-4×2101) mod 15]×15

⇒[(-2103) mod 15]×15

⇒[(-8) mod 15]×15

⇒7×15

⇒105

The sum of the digits= 1+0+5=6

Option (a) is correct.


Que 14: Find the remainder when 19200+23200 is divided by 49.

(a) 1

(b) 29

(c) 37

(d) 48

Solution: Totient of 49= 72×(1-1/7)= 42

200 mod 42=32 (Remainder Problems)

(21-2)32+(21+2)32=2×32C32.(2)32

⇒233 mod 49

⇒[(210)3×8] mod 49

⇒[443×8] mod 49

⇒[-53×8] mod 49

⇒[-1000] mod 49

=29

Option (b) is correct.


Que 15: Find the remainder when 30! is divided by 2035.

(a) 440

(b) 935

(c)  715

(d) 605

Solution: 2035= 5×11×37

30!= 2035×t+R

Here R is the remainder and t is Quotient. (Remainder Problems)

Concept: The part of 30! which is exactly divisible by 2035 is also exactly divisible by 5, 11, and 37.

According to Wilson Theorem: 35! mod 37=1

(35×34×33×32×31×30!) mod 37=1

(-2×-3×-4×-5×-6×k) mod 37=1

(-24×30×k) mod 37=1

(13×-7×k) mod 37=1

(-91×k) mod 37=1

(20×k) mod 37=1

This is true for k=13

30! mod 37=13 ……….(i)

Now divide the R (remainder) by 37

So, R= 37p+13

R mod 11=0

(37p+13) mod 11=0

(4p+2) mod 11=0

p=5, 16,…..

R mod 5= 0

(37p+13) mod 5=0

(2p+3) mod 5=0

p= 6, 11, 16….

Since for p=16, both conditions are satisfied

R= 37×16+13= 605

Option (d) is correct. 


Que 16: What is the remainder when 790 is divided by 15?

(a) 7

(b) 4

(c) 1

(d) 11

Solution: Totient of 15 = 3×5×(1-1/3)×(1-1/5)=8

So, 78k mod 15=1

Here k is a positive integer 

(788×72) mod 15=(1×49) mod 15=4

Option (b) is correct. 


Que 17: Find the remainder when 1542537859431276681 is divided by 27.

(a) 1

(b) 6

(c) 17

(d) 20

Solution: 1+542+537+859+431+276+681= 3327

3327 mod 27= 6

Note: 999 is divisible by 27, so here we can apply the divisibility rule of 999.

Option (b) is correct. 


Que 18: 6725+5413+7108-3257+173×35-247×53+205-1234=? 

(a) 7924

(b) 7864

(c) 7904

(d) 7834

Solution: First, use the divisibility by 9 rule on options. Options (a) and (d) have the same remainders when divided by 9.

Now, Apply the divisibility rule of 11 on options.

7924 mod 11=(-7+9-2+4)=4

7864 mod 11=(-7+8-6+4)=-1=10

7904 mod 11=(-7+9-0+4)=6

7834 mod 11=(-7+8-3+4)=2

(6725+5413+7108-3257+173×35-247×53+205-1234) mod 11

⇒[4+1+2-1+(-3)×2-5×(-2)+7-2] mod 11

⇒[6-6+10+5] mod 11

⇒4

Option (a) is correct.


Que 19: Find the remainder when 32^{32^{32}} is divided by 9.

(a) 1

(b) 4

(c) 7

(d) 8

Solution: 32 mod 9=5

Totient (t) of 9= 32×(1-1/3)=6

3232 mod 6=4

So, 54 mod 9=4

Option (b) is correct.


Que 20: What is the remainder when a number N, whose sum of digits is 23, and the remainder when divided by 11 is 7, is divided by 33?

(a) 7

(b) 29

(c) 13

(d) 16

Solution: N mod 9= 23 mod 9=5

N=11k+7

11k+7 mod 9=5

2k-2 mod 9=5

k=8

N=11k+7=95

95 mod 33=-4 or 29

Option (b) is correct.